Could cell membranes produce acoustic streaming? Making the case for synechococcus self-propulsion

Imagem de Miniatura
Título da Revista
ISSN da Revista
Título de Volume

Sir James Lighthill proposed in 1992 that acoustic streaming (AS) within the mammalian cochlea could play a role in the transmission of acoustic signals to the auditory sensory cells. Microelectromechanical devices for mixing and pumping, based on the acoustic streaming effect were introduced in the mid 1990s. Nature may have preceded this invention by 2.7 Gyr. We believe that acoustic streaming produced by nanometer scale membrane vibrations is widespread in cell biology. Flows generated by acoustic streaming could be produced along the 'raphes' (central channels) of silica coated diatoms. Other possible instances are yeast cells and erythrocytes whose membranes generate nanoscale vibrations. We hypothesize that some of the most ancient organisms use acoustic streaming not only for self-propulsion but also to enhance their nutrient uptake. In this paper we focus on a motile strain of Synechococcus, a cyanobacterium whose mechanism for self-propulsion is not known. The calculations presented here show that a traveling surface acoustic wave (SAW) could account for the observed velocities. These SAWs would also produce a non-negligible Stokes layer surrounding the cell, motion within this region being essentially chaotic. Therefore, an AS mechanism would be biologically advantageous, enhancing localized diffusion processes and consequently, chemical reactions. Finally, we discuss possible experiments to support (or rule out) the AS model vs. other contending explanations for Synechococcus locomotion. (C) 2010 Elsevier Ltd. All rights reserved.

Área do Conhecimento